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LETTER TO THE EDITOR

Quantum groups and Lie-admissible time evolution

A Jannussisti, G Brodimast and R Mignanii§

Dipartimento di Fisica, I* Universitd di Roma ‘La Sapienza', Piazza le Aldo Moro 2,
1-00185 Roma, Italy

Received 15 March 1991, in final form 28 May 1991

Abstract. The time evolution of operators for g-oscillators is derived for the first time by
exploiting the connection between g-deformation algebras and Lie-admissible algebras,

In recent years a great deal of atiention has been paid both in the mathematical [1]
and physical [2] literature to the so-called (improperly) quantum groups, i.e. ‘deforma-
tions’ of Lie algebras, first introduced by Arik and Coon [3] and later rediscovered
independently by Kuryshkin [4], and by Faddeev [5], Sklyanin [6], and Kulish and
Reshetiklin [7], in the study of the Yang-Baxter equations. Since 1981, many aspects
of the g-deformation of an oscillator algebra have been investigated by Jannussis and
collaborators [8-10].

In particular, Jannussis et al realized (as early as 1981) [8] that the standard form
of the commutation relation for a g-deformed harmonic oscillator [3, 4]

AA —qATA=] {1)
(where ge[—1, ), g #0) corresponds to a (A, x) mutation algebra [11], i.e. a special
case of a Lie-admissible algebra [12]. A Lie-admissible Q-algebra [10] is obtained
when considering an operator (? (instead of a number ¢) in the commutation relation,
thus getting
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The connection between quantum groups and Lie-admissible Q-algebras has been

extensively studied in [10]. Moreover, Jannussis and collaborators introduced the
generalized commutation relation [10]

AA - AT QA=f(A) (3)
where 71 isthe usual number operator (ii|n) = n|n)} satisfying the following commutation
rules with A, A*:

[A #]=A [A*, A]=—-A" (4)

f {and g, Q numbers),
= 1/¢q the g-deformed
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and f{-) is a suitable function. For instance, in the case f(#) =
one gets the Q- algebra depending on two parameters g, Q. F
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groups SU(2),, and SU(2},, respectively [10, 2].
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In the present letter, we want to discuss the time evolution of the operators /i*(t)
for the two-parameter Lie-admissible Q-algebra. As is known from the current literature
[1-7], the analogous problem has not yet been solved for any quantum group, even
for the case of the g-deformed oscillator.

In the Lie-admissible framework, the time evolution of operators is ruled by Santilli’s
generalization of Heisenberg’s equation of motion [13], i.e.

m"’i‘-gm AR (5)

where % is the usual Hamiltonian operator (describing conservative forces) and ’f‘ R
are suitable operators (supposed to represent, in general, non-conservative interac-
tions). The case T=R and #T = T corresponds to the so-called Lie-isotopic case.

According to [10], the boson realization of the operators A and A* for f (R)=4q"
(with Q a parameter) has the form

A= JUit1o, At =g 1At Hog )
A+l A+l
where
g-Q _Q -q
x]= 7
[ g-Q Q-9 @

and a,a*, i=a4%a are boson operators satisfying the usual commutation relations.
Since the operators A*A and 4*4 commute, they have the same basis |n) (i.e. the
usual Bose basis in Fock space).

From (6) one gets easily

Alny=vInlgqln—1) A'lny=vInF1lg,ln+1) (3)

A* Aln)=[n]g,lm 9)
and the relations

AAT =[A+1]),, ATA=[Alg, (10)

A - - -
The operators A, A” can be expressed in terms of the coordinate and momentum
operators X, p as [9]:

A:J@A(Wfﬂ%) -
i =\ (vmet-igk)

where A is a scale factor depending on g and Q.
From (11) and (2) (with f(#) = ¢"), we find the following non-canonical commuta-
tion relations for £ and p:

- 21 Q 1 A)
= z 4 12
[xpllﬁ(qA e 0+1 (12)
where % is the harmonic oscillator Hamiltonian
2 2
%=§L 3%L£2=%$(Q+1nfﬂAA++AfA) (13)
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On account of (10) we get
A 'h(!) -2 " -
3’6’=—4~(Q+1)A ([A+1]g,+[Algq) (14)

i.e. 9 is a function of the number operator A.

The exponential form of the time evolution for A, obtained from the generalized
Heisenberg equation (5) for the Lie-admissible Q-algebra (3), is given by [13] (we
have of course, in this case, 7= fand R= Q QI)

ﬁ(r)=exp(irg:Q)A(0) exp(—iff). (15)

On account of (6) and (14), A‘( t) becomes

A(t) = exp{it—w(—c;ﬂ AT([a+ 1]Q‘q+[ﬁ]Q,,,)}
A+1 . — +1 _ u -
%’ d exp {%_} A X[+ 10, "‘["]o.q)}

B

~([ﬁ+2]o.q+[ﬁ+1JQ,q)]} (0). (16)

After some algebra we obtain finally

A(ty=exp [ ”‘”(Q‘;:i)(q'fl) ]A(O) (17)

and the corresponding expression for A*:

itw(Q+1){(g+1) ,;]
4A* ]

A*(t)=A%(0) exp[ (18)

The case g =1 {already discussed in [10]) corresponds to A =1, and therefore
A(ry=e @2 4(0). (19)
As already noted, the g-deformed oscillator is obtained for Q=1/g (A =¢""%),

namely

2
A(1)= exp[ﬂtw (3;—1}2} q ]A(O). (20)

In the same way, without any difficuity, it is possible to find the time evolution for A,
A* for any (regular) function f(#).

We have therefore shown that the formalism of Lie-admissible algebras allows one
to discuss dynamics for quantum groups in a straightforward way. Further applications
of this approach will be given elsewhere,

Two of us (AJ and GB) acknowledge the kind hospitality of the Department of Physics
of the first Rome University.
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