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LElTER TO THE EDITOR 

Quantum groups and Lie-admissible time evolution 

A Jannussist$, G Brodimast and R MignaniSS 
Dipartimento di Fisica. Is Universitl di Roma 'La Sapienza', Piazza le Aldo Mom 2, 
1-00185 Roma. Italy 

Received 15 March 1991, in final form 28 May 1991 

Abstmd. The time evolution of operators for q-oscillators is derived for the first time by 
exploiting the connection between q-deformation algebras and Lie-admissible algebras. 

In recent years a great deal of attention has been paid both in the mathematical [ l ]  
and physical [2] literature to the so-called (improperly) quantum groups, i.e. 'deforma- 
tions' of Lie algebras, first introduced by Arik and Coon [3] and later rediscovered 
independently by Kuryshkin [4], and by Faddeev [5], Sklyanin [6], and Kulish and 
Reshetiklin [7], in the study of the Yang-Baxter equations. Since 1981, many aspects 
of the q-deformation of an oscillator algebra have been investigated by Jannussis and 
collaborators [8-IO]. 

In particular, Jannussis er a/ realized (as early as 1981) [8] that the standard form 
of the commutation relation for a q-deformed harmonic oscillator [3,4] 

i i )  AA+-,a+A = f 

(where 9 E [-1, m), 9 # 0 )  corresponds to a (A, a)  mutation algebra [ l l ] ,  i.e. a special 
case of a Lie-admissible algebra [12]. A Lie-admissible Q-algebra [lo] is obtained 
when considering an operator Q (instead of a number 9 )  in the commutation relation, 
thus getting 

(2) I ;  ;+\-;;+ ? + A : - :  
{",(I ,--"(I -(I v ( I - I .  

The connection between quantum groups and Lie-admissible Q-algebras has been 
extensively studied in [lo]. Moreover, Jannussis and collaborators introduced the 
generalized commutation relation [IO] 

AA'-A'(JA=f(n*) (3)  

[A, 61 =a  [a+, n^] = -a+ (4) 

where n^ist~e~sualnumberoperator (6ln)= nln)) satisfyingthe followingcommutation 
rules with A, A+: 

andf( . )  is a suitable function. For instance, in the casef(6)  = q.^ (and q, Q numbers), 
one gets the Q-algebra depending on two parameters q. Q. For Q = l / q  the q-deformed 

groups SU(2),, and SU(2),, respectively [lo, 21. 
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In the present letter, we want to discuss the time evolution of the operators Ai'(t) 
for the two-parameter Lie-admissible Q-algebra. As is known from the current literature 
[I-71, the analogous problem has not yet been solved for any quantum group, even 
for the case of the q-deformed oscillator. 

In the Lie-admissible framework, the time evolution of operators is ruled by Santilli's 
generalization of Heisenberg's equation of motion [ 131, i.e. 

JA 
J t  

i h  - = XTA - A R Z  ( 5 )  

where &' is the usual Hamiltonian operator (describing conservative forces) and f k 
are suitable operatorsA (supposed to represent, in general, non-conservative interac- 
tions). The case ?= R and 2Z7 # ?% corresponds to the so-called Lie-isotopic case. 

According to [IO], the boson realization of the operators i and A+ for f(i) = q' 
(with 0 a uarameter) has the form 

where 

q"-O" -- 0"- qx 
[XI=-- 

q - Q  Q - q  
(7) 

and a, a+, 6 = 6'2 are bpson operators, satisfying the usual commutation relations. 
Since the operators A+A and $6 commute, they have the same basis In) (i.e. the 
usual Bose basis in Fock space). 

From (6) one gets easily 

and the relations 

AA+ = [i+ A'i=[GlQ,, .  
The operators a,i+ can be expressed in terms of the coordinate and momentum 
operators 2, p  ̂ as [9 ] :  

(11) 

where A is a scale factor depending on q and Q. 

tion relations for 2 and 6: 
From (11) and (2) (withf(6) = 9'). we find the following non-canonical commuta- 

2i Q - 1 %  
[ i , j?]=ih  q A K 2 + -  - ( h w Q + l  

where &' is the harmonic oscillator Hamiltonian 

ye=-+-p=- A p 2  m o 2  ho 
2m 2 4 

( Q +  i ) ~ - ~ ( . i i + +  PA). 
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On account of (10) we get 

i.e. 2 is a function of the number operator 2. 
The exponential form of the time evolution for a, obtained from the generalized 

Heisenberg equation (5 )  for the Lie-admissible Qalgebra (3), is given by [131 (we 
have of course, in this case, f =  I and k = Q = QI) 

On account of (6) and (14), A([) becomes 

After some algebra we obtain finally 

and the corresponding expression for At: 

The case q = 1 (already discussed in [lo]) corresponds to A = 1, and therefore 

A(,) =e-”-‘Q+I) /2A(o) ,  (19) 

As already noted, the q-deformed oscillator is obtained for Q = l / q  (A = q-”4),  
namely 

In the same way, without any difficulty, it is possible to find the time evolution for A, 
A+ for any (regular) functionf(6J. 

We have therefore shown that the formalism of Lie-admissible algebras allows one 
to discuss dynamics for quantum groups in a straightforward way. Further applications 
of this approach will be given elsewhere. 

Two of us (AJ and GB) acknowledge the kind hospitality of the Department of Physics 
of the first Rome University. 
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